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ON THE THEORY OF OSCILLATING AIRFOILS OF FINITE SPAN
IN SUBSONIC COMPRESSIBLE FLOW!

By Eric REISSNER

SUMMARY

The problem of the oscillating lifting surface of finite span in
subsonic compressible flow is reduced to an integral equation.
The kernel of the iniegral equation is approximated by a simpler
expression, on the basis of the assumption of syfficiently large
aspect ratio. With this approximation the double integral
occurring in the formulation of the problem is reduced to fwo
single integrals, one of which s taken over the chord and the
other over the span of the lifting surface. On the basis of this
reduction the three-dimensional problem appears separated into
two fwo-dimensional problems, one of them being effectively the
problem of two-dimensional flow and the other being the problem
of spanwise-circulation distribution. EHarlier results concern-
ing the oscillating lifting surface of finite span in incom-
pressible flow are contained in the present more general results.

INTRODUCTION

The present report is concerned with the problem of the

oscillating airfoil of finite span, within the frame of the linear-
ized lifting-surface theory. The aim of this study is the

development of a theory which incorporates simultaneously -
the effects of three-dimensionality of the flow and of com- -

pressibility of the fluid. Asan exact solution of this problem,

even within the limitations of the linearized theory, presents

very great difficulties, it is worth while to work toward an
approximate theory which is valid, provided the aspect ratio
of the lifting surface is not too small.

The author has previously obtained results of this nature

for the case of incompressible flow (references 1 and 2). In
this earlier work the known results for the problem of two-
dimensional incompressible flow were contained as a special
case. The present work generalizes these results so as to
take account of compressibility in the subsonic range. Thus,
the results of this report consist of a system of equations
which contain, as special cases, both the author’s results for

the wing of finite span in incompressible flow and the results |

of Possio’s theory of two-dimensional compressible flow
(reference 3).

The scope of the present results may briefly be deseribed
as follows. The starting point of the work is an integral-
equation formulation of the problem of the lifting surface of
finite span. The integrals which occur are double integrals

1 Supersedes NACA TN 1953, “On the Theory of Oscillating Airfoils of Finite Span in
Subsonic Compressible Flow” by Eric Reissner, 1049,

256646—51—63

and the functions to be determined are functions of two in-
dependent variables. - The essential step of the present work
is to replace the actual kernel of the integral equation by an
approximate kernel in such a way that the double integrals
are reduced to single integrals over the range of either one
of the two independent variables.
is reduced to two problems which are to be solved separately.
The first of these two problems is of the same nature as the
Possio problem of two-dimensional compressible flow. The
secaond of these problems is of the same nature as the problem
of the Prandtl lifting-line theory for the Wmcr of finite span
in uniform motion.

As in the theory of incompressible flow, this reduction of

the double-integral problem to two single-integral problems -

depends crucially on the assumption of sufficiently large
aspect ratio. Yhile “sufficiently large” aspect ratios might
be thought to be aspect ratios of about 3, definite statements
of this nature must be based on experimental evidence, as
long as no exact solutions exist for the three-dimensional
problem of the oscillating lifting surface in compressible flow.

It is perhaps worth while to state explicitly that the pres-
ent problem is quite different from the corresponding problem
for supersonic flow.

It might also be added that there are reasons to believe

that it is not satisfactory, even approximately, to superimpose
aspect-ratio corrections for incompressible flow and com-
pressibility corrections for two-dimensional flow in order to
obtain corrections for the combined effect. . This latter point
is one of the reasons for the present study.

This work was conducted at the Massachusetts Institute

In this.way the problem -

of Technology under the sponsorship and with the financial = __

assistance of the National Advisory Committee for Aero-
nautics.

. SYAMBOLS

X,Y,Z  Cartesian coordinates

U main-stream velocity in X-direction

t time

H . defined by equation of lifting surface
Z=H(X,Y ) ’

>, v,W components of velocity change caused by pres-

~ ence of lifting surface -

R, region in X,Y-plane occupied by projection of
lifting surface ,

o density of stream flowing with velocity U/
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density and pressure changes, respectively, asso-
ciated with velocity changes u, v, and w
velocmy of sound in main stream (a2=dp/dp,)
potential of velocity changes U, '0, and w
circular frequency of oscillation
Mach number of main stream (U/a)
real part of .
s length to be- identified with the semichord
of B, at midspan
reduced-frequency parameter (wb/U)
dimen)sionless coordinates_defined by equation
(19
function defined by equation (21)
2

parameter defined as ;L=1'€_ l‘iﬁ e

kM
1— M

k
parameter defined as Y={—ap

parameter defined as x=

regmn in z,y-plane corresponding to regmn R‘z
in X,Y-plane

coordinate of trailing edge of R,*

coordinate of leading edge of R,*

region in z,y-plane consisting of the stnp to the

right of the trailing edge of R,*
entire z,i-plane except for regions R,* and Ru*
function defined by equation (36)

- function defined by equation (37)

variables of integration in accordance with
equation (40)

defined by equation (41)

Hankel functions of second kind, and of zeroth
and first order, respectively

auxiliary variable of integration -

function defined by equation (51)

function defined by equation (52)

functions defined by equations (54), (55), and
(56)

order of magnitude of

function defined by equation (38)

function defined by equations (73) and (83)

auxiliary variable of integration

auxiliary variable of integration

function defined by equation (76)

. ratio of semispan to semichord at midspan

defined as n*=1y[s+/1—M?

local semichord divided by semichord b at mid-
span

8 quantity indicating amount of sweep and
defined by equation (86)

dimensionless coordinate defined as
t*=(z—2z,*)/0*

quantities defined by equation (87)

quantities defined as -

g,y =g @, i\ ="y =Nz, )
functlon defined by equation. (89)
function defined by equation (90)

THE BOUNDARY-VALUE PROBLEM OF THE
OSCILLATING LIFTING SURFACE

It is assumed that a nearly plane, impenetrable surface is
put into the path of an inviscid, flowing fluid which, except
for the effect of this surface, possesses a uniform velocity U
in the direction of the positive X-axis. The impenetrable
surface; henceforth called lifting surface, is taken to lie
nearly in the X,¥-plane, and its equation is written in the
form Z=H(X,Y,t). When H=0 no disturbance is caused.
When the lifting surface is not exactly plane and parallel to
the direction of U the velocity components (I7,0,0) are changed
into (U+wu,»,w) where «, », and w depend on the form of the
function A and on the shape of the region R, which is the
projection of the lifting surface onto the .X,Y-plane.

The disturbances caused by the presence of the lifting
surface are assumed to be small, in the sense that the differ-
ential equations and boundary conditions of the problem are
linearized with respect to the disturbance velocity compon-
enfs u, », and w and with respect to the pressure and density
changes p and p caused by the presence of the lifting surface,

Under these conditions the differential equations of the
problem are the following:

U sr=—3x (2) O
2+0 =57 (L) @

Op Op ou , O , oW\
atVaxtepxtortaz)~0 @

p=a*p (5

The quantity p, in equations (1) to (4) is the density in the
fluid flowing without disturbance and the quantity ¢ in
equation (5) is the velocity of sound in the undisturbed fluid;
that is, a*=dp/dp,.

The boundary condition of no relative normal flow at the
lifting surface is satisfied, within the frame of the linearized
theory, instead of on the lifting surface itself, on the pro-
jection of this surface onto the X Y-plano,

oIl
X, Y inside R,, w— St +U2)X {6)

The form of condition (6) (which holds on both sides of the
lifting surface) indicates that w is an even function of Z.
From equation (3) it follows then that p is an odd function
of Z and the condition that the pressure distwrbance p is
continuous, except when passing across the lifting surface,
means that for Z=0 and

X, Y outside R, p=0 )

On the basis of conditions (7} and (6) the problem may be
considered to consist in the determination of u, v, w, and p in
the half space Z20 with the boundary Z=
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In addition to conditions (6) and (7) the following further
conditions are prescribed in order to obtain an unambiguous
solution. At the trailing edge of the lifting surface,

X=X,(Y), p is finite (8)

Finally, it is postulated as a condition ‘“‘at mﬁmty” that
energy is traveling outward without reflection, in & manner
to be defined more precisely in what follows for the case of
simple harmonic motion.

VELOCITY-POTENTIAL FORMULATION OF THE PROBLEM

The problem as stated in equations (1) to (8) may be
solved by means of a velocity potential ¢, in terms of which

26 |
Y=3x
09
d¢
W=3Z

Combination of equations (9), (1), (2}, and (3) results in the
following expression for the pressure change p:

. —Po (M-{—U

Combination of equations (10), (5), (9), and (4) results in the
following differential equation for ¢:

170 o \?
#(atUsy) +=0

Equation (11) is to be solved in the half space Z2 0 subject:
to the following boundary conditions at Z=0:

(10)

o' L D¢ 0%
dX2 " 2Y? " 2Z?

(11)

S d¢_OH oH
X, Y inside R, -2 Y AR +U5X (12)
¢
X, Y outside &,, E)t+U =0 (13)
— X (D), at a¢ % is finite (14)

and subject to the condition of no energy reflection at in-
finity.

In what follows attention is restricted to the case of simple
harmonic motion by writing:

$X,Y,Z,ty=e"¢(X,Y, Z) (15)
with corresponding expressions for H and p.?
Equation (11) now assumes the form
o' , 0% , O 1/. o\
sxtope a(iotUsg) 3=0  ae)

2Tt is perhaps not entirely superfluous to indicate that this is meant in the sense that,
cotresponding to a surface equation Re(ef«F), there is s pressure distribution Re(ein'p).

Equation (10) becomes

B=—po (174U 22)

" The following dimensionless parameters and variables are

now introduced:

=Y
a
: (18)
(6]
=g
_X )
=7
) Y
y=v1-3r ¢ (19)
V13 %

The differential equation (16) then assumes the form

; 2k M 3%, R2AL2

V- 1—Af20zx ' 1—AfL?

=0 (20)

Equation (20) is reduced further, for the purpose of elimi-
nating first-derivative terms, by the following substitution:

p=eiet § (21)
Choose
Ak
L ¥ £ - (22)
and obtain as the equation for ¢,
Vi + =0 23)
where
le'[
=1—3f : (24)

The expression for 7 and the boundary conditions must
now be expressed in terms of the new independent variables
z, y, and z and in terms of the new dependent variable y-.

From equations (17) and (19), it follows first that

=2 (k5437
Combination of equations (25) and (21) gives
L (26)
where » is defined as _
y——trs _@n
The boundary condition (12) becomes
z, y inside R.*, g‘: II_U_S """“( kH-{— (28)

where B* is the region in the x, y-plane corresponding to
R, in the X, Y-plane.

971 _ .
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The boundary condition (13) becomes
z, y outside R,*, 'm,{z+—\p—0 (29

The condition of finite pressure at the_trailing edge is now,

z=2s(y), 'Lm[l-{-l is finite (30)

Finally, the condition of no energy reflection at infinity is
written in the form

e o, Y= f(z,y,2)e™ @D

where rf=g%-} 4?22 and where f tends to zero asz tends
to infinity.?

The boundary condition (29) is made more specific in the
following manner. From condition (29),

Uz, y, 0)=cly)e " (32)

For any line y=Constant which does not. pass through R.*,
it can be concluded from the condition of undisturbed flow
ab z=— o that ¢(y)=0. The same can be said for that
portion of any line y=Constant which is situated in froné
of the leading edge of the airfoil region. The situation is

different for portions of lines y=Constant which do pass.

through R,* and which are to the rear of the trailing edge
of R,;*. The region to the rear of the trailing edge and
bounded by lines y=Constant which are tangent to R.,* is
called the wake region and is designated by R,*. The
exterior of the region R,* and R,* is called the remaining
region and is designated by R,*. Then ¢(y)=0 in R,* and,
in general, e(y)£0 in R,*.

Equation (29) is thus seen to be eqmvalent to the follow—_

ing two equations:

z,y inside R,*, =0 (33a)
z,y inside R,*, ¢=c(y)e ' (33b)

If now & function A is introduced defined by
Ap=24lz:), 3,01 T G4

then equation (33b) can be written in the form
2,y inside Ro*, %%— %A(y) @es (35)

In view of equation (33a), there may also be written .
Alyy= 2f TM dx ’ (36)

where :tz,(y) is the coordmate of the leading edge of the
airfoil region R,*.

SUMMARY OF THE RESULTANT BOUNDARY-VALUE PROBLEM

Before. proceeding with the solution of the prdblem as
reduced in the foregoing section of this report its final
formulation is recapitulated as follows.

.

8 This insures that ¢ ==f e?@t=*7) g5 z tends to Infmity and therewith that waves are
traveling away from the source of the disturbance.

Determine the solution of the differential equation
VA =0 (23)

in the half space 220 subject to the following conditions
at 2=0:

x,y inside [2.*, g— g@x, ) (282)
oY tr(rp—
z,y inside Ry*, 5% ——-— A( Jelr&r== 35)
- « O
z,y inside R, *, ﬁ=0 (32L)
= xr(y), lS finite (29a)
and subject to the following condition at infinity:
2o, Y= fe (31a)

where f=o0(2) and where r”—x’-{—y’-{—z’
Various quantities occurring in these equations are defined
as. follows:

_Uele (g of

A=, " Mz do (360)-

Aep=2?GRD ey

The parameters «, z, and » are defined by equations (24),
(22), and (27), respectively. The region R.* follows from
the airfoil region R, by multiplication with a scale factor 1/}
in the z-direction and by multiplication with a seale factor
VT—=2I*b in the y-direction. The region R,* is the strip
ext,endmg from the trailing cdge z=2r to 2=, and the
region R,* is the remainder of the z, y-plane.

The solution of the boundary-value problem is to be used
to calculate the pressurc-change amplitude 7, at the lifting -
surface in accordance with the relation

~ U ol s
Fe=—"5"e "‘(t ”“’+%)n,~ (39)

" which follows from equation (26).

The solution of the problem as summarized will be
approached through its reduction to an integral equation

. for the quantity ) as defined by equation (38).

AN INTEGRAL REPRESENTATION FOR THE VALUES OF 0y./ds

TIn this section it is proposed to derive a formula for the
values of 0yY/0z, for the purpose of setting up the basic
integral equation of the problem under consideration. To

' begin, results are taken which in essence are known and these

are transformed in a way designed to facilitate the subsequent
transition from the exact double-integral equation of the
problem to the approximate integral equation containing
single integrals only.
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The first formula is a representation of the values of
¢ fozx in the interior of the half space z>>0 in terms of the
values of d¢/0z on the boundary z=0 of the half space, as

follows:
| f NE 1) (—) dedn (40)
In equation (40) and in all that follows,
P=(e— P +Ey—n)tet (41)

and the quantity N is according to equation (38) given by
20¢(£,4,0)/0¢. It is noted that this representation of d¥/dx
insures that the conditions at infinity as expressed in equa-
tions (31) are satisfied.

From equation (40), it follows that

axa- 4,rf fR(E, 55 z( - r) dtdn

If it is now observed that the quantity »~'e~**" is a solution
of the differential equation (23) for ¢, then equation (42)
may be written in the alternate form .

e—i;r
=2 [ne o (St et ) (5) dedn @3)
In equation (43), it is noted that 9*/oy*=0%24® and the term

42

in question is integrated by parts with respect to 5. In
addition to this, by making use of the obvious identity
equation (43) is written as follows:
_{‘
ot 2 [rew (Zote)(5) asan—
. e-—iﬂ'
= [ = w1 (Ste) (5 ) dsdn—
1 ON D (e i
=) [on oy () st 9

In the first integral on the right of equation (44) the inte-
gration with respect to 7 may be carried out explicitly.
When the remaining two integrals are absent, there is there-
by obtained the appropriate form of the mtegra.l relation (44)
. which would follow if two-dimensional low had been assumed
from the beginning.

The following formula expresses the integral in question
in terms of a Hankel function

S e (
J_, e= Bt —nr+ zdﬂ—wﬂn”[h’( —g+ o

The next step is to reduce the second integral on, the. nght

of equatlon (44) to en integral mvolvmg oMoy, To this
end, there is written
" e I )

The two integrals on the right of equation (46) are integrated

by parts and the constants of integration are chosen in such

a way that the integrated portions vanish. After some
elementary transformations, this leads to the following

formula:
= —ix Ve (r—p2+2
A 3 —A ] e
Jo nem—ne i e s dn=
N _al[y—nf —ly—l e—u\‘(z— 24242 d- i .
-3 Y= [f—«» Nyl R

Equations (45) and (47) are introduced into equation (44)

and the following relation is obtained:

bxbv f}\('s!y)(axz'l"‘z hTHom [lcv’m]}dg_!.
_1_ ak(ly 7)[ _"_“lle—zk (z s)z.rziﬂﬂrl
f nty—r axz' )f /(x—z)’+z’+§ﬂ &t
b e~ isVE—DI 2t (r—)*
d
f(x L z’-'-(y ﬂ)g:l} Edﬂ

The final step now consists in integrating equation (48)
with respect to x between the limits — « and =. The con-
dition of undisturbed flow far in front of the lifting surface
makes (Q¥/d2);-_=0. There is then obtained the relation

% el s B e+

dz
ef T [ e’ ) det
i J‘ —tr—al e—in/(z—g)=+z=+g=
irx

V=
Iy ‘ﬂl [ —{¥—l e—fl: Jo a1 ]
: Kzf—‘n f .’(x _E)Z 2+ g.gdg‘ dx +

f e—is V& —DEREF G -2
—= fm[ [@— =+ —n)

(48)

O (ly—n| O

only—n d2)-w i+

dx'}dsdn
49)

Equation (49) expresses the values of dy/oz for 220
in terms of the values of \(£3)=20¢(£y,0)/0f and of

ON(Em) fOon. Because of this fact the present form of this
integral relation is particularly well-adapted to separate
three-dimensional from two-dimensional effects. N

THE INTEGRAL EQUATION OF THE OSCILLATING LIFTING
SURFACE

The integral equation of the problem is obtained by sub-

" stituting the information contained in equations (28), (32),

and (35) in equation (49) and by then letting z tend to zero.
In so doing the integrals which contain infinities in the inte-

. grand are to be interpreted as Cauchy principal values. This

_*pressible flow in reference 1.
this regard are encountered for the present problem of com-

Iatter step has been discussed in detail for the case of incom-
No additional difficulties in

_ pre551b1e subsonic flow and the explicit justification for this
 step is therefore omitted in the present report.

973,
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The integral equation of the oscillating lifting surface in
subsonic compressible flow is thus of the following form:

oz, y)=-—--==gf "\ Kl — 8 ddi+

'y ®
== A(y)et#r @) f —tERK [ —
27 w)e o) © (=

&;di+

1 [
ir 91’56 oy Gl@=8, y—n)ildedn—

%f% [ 3 aetmentie—o, w—mddzan

(50)
The kernels K and @ are of the following form: '

K__[Hﬂa<m(ix~zl>]+x2 " Zmeq - 6

{ -1l giVE—DE -
Mf Ne—d de+
ly—nl o=t VG —E+E3 ] ,}
"zf [f— e—o+c d |4 g+
fz 3 [ehin\f(x'-s)'-i-(v-—n)”] ,
V@ — 2 (y—n)

(52)

Equation (50) holds when 2 and y are inside R,* and is to
be solved for ), in terms of A and g, where A and g are defined
by equations (36) and (37), respectively.

For the case of two-dimensional flow, dX/d4=0 and the
last two integrals in equation (50) areé absent. The remainder
of the present work has as its object the derivation of a
procedure to take account of these last two integrals in an
approximate manner which permits the calculation of the
effect of three-dimensionality of the flow in a simpler way
than by nctually solving the complete equation (50). In the
derivation of this procedure the integral over the airfoil
region E,* and the integral over the wake region R,* are
treated separately.

REDUCTION OF THE DOUBLE INTEGRAL OVER THE
AIRFOIL REGION R.*

Write e

S€§ N ¢ aedn _ig:'a"[li‘/ ”!(I,+I,)+Ia-ldédn (53)

where
PO e ot i
=5 V=855

L=+ f [
r | e~V G—o2

= — = dx!

T [w/(w’—-E)”-l-(y—n)"’] ’

& 6

B _.‘/Tf)z—g—z

(56)

—lymr| e—icNT—DIID
=l ¢ d;‘]da: (55)

When dealing with lifting surfaces of sufficiently elongated
form, that is, with surfaces of sufficiently high aspeet ratio,
ly—a|>>{x— | over the major portion of the surface. When
this latter inequality holds, the terms I, can, as will be seen,
be written in such a way that a relatively simple dominant
term can be separated in each of them. These dominant
terms will be used for the approximation to be developed.
There remains then the question concerning the validity of
the approximation over that portion of R,* where the ine-
quality Ja—§<<|y—n| does not hold. This question is
answered as follows. It is assumed that ON/dy varies suf-
ficiently slowly with » so that in this portion of the region
R.* it is effectively constant. If this is the case, all that is
necessary is to take account of the fact thai both the kernel
@ and the approximation to @ to be obtained are odd func-
tions of y—n, so that in both cases the contribution to the
value of the integral coming from this portion of R.* can be
neglected.

The aforementioned argument is also implicit in the
earlier derivations for the corresponding problem for in-
compressible flow (references 1 and 2). There appears to
be no reason to believe that this particular argument should
be less applicable to the problem of subsonic compressible
flow than to the problem of incompressible flow,

Equation (54) is written in the form

. ~ly—u} g—ixy~HEHE r—%§
I‘__f -t [w/(r St tidEs E’]

and this implies the following order-of-magnitude relations:

P ——r ,
I,z—(x—.f)f_: e—;, (%-m dr

e —ixjy— q]) hc—mv-.t)]
(567
+0 ly—nl* )
Equation (55) is written in the form

Ty—nP
iyl -8\ ¢—IxVEFHA ”
e[ () e o
—|y—n} ’l:?l' r—§ e le/Z* 3413
- [—2—How<xlr|)+ s

In equation (58), note that, when « is not too small and
when |{y—n|>|z—§,

Le—G—p[0

]

]dr (58)

g~ it
Hy®(&lgy= 0( 7 §’) (59)
5=k g-ix VG +f= _ o —ixi]
I Ve 0[ T E’] €0

Neglect the term in equation (60) compared with the term in
equation (59); then,

e [T e s (61)

Note that this approximation ceases to be correet as x be-
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comes smaller and smaller. However, when this is the case

the contribution to the total coming from I; becomes negli-

gible because of the factor «* in front of the integral in I,.
Finally, write for I3

_2 [ gy [ T
an[zHo (y—aD+ | e

Now, when xly—7| is sufficiently large,

e—ix [T - |

V&P —n)

I[

das"] (62)

2 R
2wy —i=0 (e ) 3
and
D (=t V@G
onJo @ P+y—’
(x—ge*lrl (z— E)" g~ tlr-al
0[ ly—21® ] O y=ar ] ©9

Neglecting the terms in equation (64) compared with the
terms in equeation (63),

L[ ey —aD) |- ’y W= g7, ey —a) (85

Comparison of expressions (57), (61), and (65) shows that
the contribution of I; to the total may also be neglected.
Introducing then expressions (61) and (65) into equation (53),
the following approximation is obtained

[ ~ O\ [y—nl
iﬂsbnadsdn 959{3 Y—1

2 f TN s | dsdy

kg Ei®(dy—n)+
(66)

Equation (66) containg the fundemental simplification of the
kernel @ in the region R,*.

Noting that the factor of OAf0y in equation (66) does not
depend on £, there is written further

J‘Ir(ﬂ) a}\d _9 D z-(’l)
@ O ° OnJs

dl‘r

Irde— M G0 S )

Take for ()., its value zero u:nmedlatelymfront of the lead-
ing edge and for (A)., its value —i»A which follows from
equations (35) and (38). Therewith, and with equations-
(36), equation (67) becomes

J‘Ir(ﬂ) a}\
zy, (1) a'ﬂ
By introducing equation (68) into equation (66), the folow-
ing equation is obtained:

959531\ dsdn—SE —irer £ (Aemr)fy ”[ ";“Hl"’(xly ~a)+

e[ "'HHowcxlrl)dr:[dn

Equation (89) represents the final result of the present
section.

dE=e—irrtn __-(A_g_"’-'r) (68)

(69)

975

REDUCTION OF THE DOUBLE INTEGRAL OVER THE 'WAKE
REGION R,*

In reducing the double integral over the airfoil region R.*

to & simpler approximate form, use has been made of the
fact that the span of R,* is appreciably larger than the chord
of B.*. Evidently this is not the situation for the wake re-
gion R * and thus additional considerations are necessary
for the integral extended over R,. '

Proceed as follows. Write the last integral on the right of

equation (50) in the form _
fxr 0} d‘g’] dn
z

[fosnm L[

The second of the two inner integrals on the right of equa-
tion (70) may be treated exactly like the integral over R,*.
The first of the integrals has the property, as will be seen,
that it is dependent on z in a simple explicit form.

(70)

Taking the second integral first, there results, in aualogy_ N

to equation (56),

§ -j—n (AeP=r) [J:Tm et @ d’;’] dy=

Sﬁd (Ae"‘-‘T) ly— ﬂl[‘x‘[ te= "'EHm(wad;-_t.

i vy a] [

The remaining integral with respect to £ in expression (71)
will be introduced in evaluated form in the final collected
form of the results.

Next the remaining integral in equatlon (70) is transformed
as follows

[t [ [ e-mnae—ty—mdt | dn

= f gy (be) U; ¢~ G(—a,y—n)do | dy

e~ dEdy 1)

et [ - (even) Fuly—n)d 72

It may be noted that the function Fy reduces to the
function F first introduced by Cicala when A7=0, that is,
when the fluid is incompressible (references 4 and 5). Com-

bination of equations (72) and (52) results in the following
form of Fl,

=J‘=e"”"G(—o’,y—1-1;x)d'0'
0
_ly=al (o {f—lv—u[ Y
¥—1 Jo —= o+
Iyl g=ix /TR
of (R ) et

— Iy ’ﬂle ixVA+E(r—2)%
f_.. r-(y—n) [1/1'2-!-(1/ n)fT“] } do
(73)

<_JE—_|_F+'LK d§-+
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Now equations (7 1) and (72) are combined in accordance

with equation (70) in order to obtain the followmg approxi-
mation to the double integral over R, *:

‘ffE(Ae‘”T)e“‘”EGdEdnz
Ro*

et % (Ae‘”’T)FM(y—n) d‘h)—]- L.

— vty p—i
g:e_f_e_” d (Aeinr) ly— "[[ YT H,® (dy—q])+

v
_[ —
ef i Ho‘2><x|rbjgz.;:|dn (74)

THE APPROXIMATE INTEGRAL EQUATION OF THE PROBLEM

Equations (74) and (69) are substituted into equation (50)
and the following approximate integral equation is obtained:

9@, =—5=F . MepKGE—g ode+

2 pgever [ emtR g 9t

e = Yoall e [T e gegrhat

. rd.
x%rHl"’ (kly—1 D] dn _Z—:re_mfﬂ (Agizr) Fopdy

(75

Equation (75) represents in preliminary form the result to
be obtained in this report. This result is reduced to a
somewhat simpler form as follows.

Set,

and introduce a new d1mens1onless spanw1se coordmate y*
defined by

* Y "
V=i | (77)

If b represents the semichord at midspan and sb the semi-
span, then it follows from the definitions of 2 and y in
equation (19) that the coordmate »¥ assuies values i the
interval (—1,1) only.

Further, set

) =x*@"), zry)=2r*(y") (78)

and note.that xL*(O)——l z7*(0)=1.
lifting surface, —z *=z,*=1 throughout.

From equations (51) and (65), there follows for the first
integral on the right of equation (75),

For a rectangular

¢ rewra=§ Moo [ -5 2= moga g

Lak (e

S0 moaenar | ax 79)

Aetir=0 : (76) !

The second integral on the right of equation (75) becomes
® —iy — ® —tir _'l:_ﬂ'-l.{___lx_fl T @ —_
Jo eamae= [ e[ ~iztlmdl g gt

' x(z—8&
[ meqeas e (80)

The third integral on the right of equation (75) becomes,
with « from equation (24),

d ke d M iI —_—
¢ gyt =[x mtiy—a+

e[ me e | dn=

ks M
1 dQ Iy —11*[ kAL f‘“ml‘ T
@ = | =M 5 M@ (ehds+
EAM ix 2 ksl
- g 47 (1/—11—2[ *—n*l)]dn* (81)

Finally, there is written for the fourth integral on the right
of equation (75),

9€ (Aetr) Fo(y—n)dn

£ 4aQ _ sk ok *
é—ldﬂ*Fu 1/1—11{’@ n)]dn

where the function Fy, as defined by equation (73), may be
wribten in the following alternate form:

i [T gemtM VIR (1 u)d
f e w=+r=+’ o
—e le —tM\/
sz (f s dg‘) drt

= |ple—iM VA3 1.y .
f_m 7‘2+$’ (\/;.q_;z—i'l;‘f) lfT:] dc‘ (83)

Now collect equations (82), (81), (80), and (79) and sub-
stitute the result in equation (75). This gives

s =—g= .. Mew) 25 !

757 manqenar | ae+

(82)

Fylz)=

28 g+

5200 [~ e I =l gy

[0 monqsnas ] ae+

P 1 dQ { ksAf '-ilX
o 4xs~/1—AL? 1 dq* JI1—AR 2
[ .o ksﬂ[ *l)'i‘
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e
[ e Ho(’*(ld)dr]—

1ks ks *__ *]}d ®
'T—Mz(y 77} ¢ dn

J1—A2
In equation (84) there are introduced dimensionless coor-
dinstes z*and £ as follows:

2z—(zr+21)
Er—Tz,

(84)

*=

x (85)

so that the interval 2, <2< 2, goes over into the interval
—1=<z*s<1. Further,

where b* is the ratio of local semichord to semichord b at
midspan. Finally, the following quantities are introduced:

ﬂ.‘r—'l‘z,=2b*

%(h_i_m:%* (86)

F=b*x
yE=D" (87)
Q*=Qfb*

Note that, for the rectangular plan form, §*=1, z,*=0and,
for the elliptical plan form, §*=+1—(@*)?, z.*=0.
Equation (84) then assumes the following form:

it =i N RN G — 0l de

27

2 gty e [ emive AN [ — £ 28
—iv* (2" fre”) 1 dg*

€

£ —z S — dn*

4xsJ1—M2) -1 dy* ol / U v 71*):| 7

(88)

Comparison of equations (88) and (84) gives for the ker-

nals ¥V and Sy the following expressions:

No=—5[E meq- [ meana] @9

O

ir ksM |z . ~Afld ,
Su@)=" ‘/_M“[Hlm(mm | meanar]-
i ks

The task from here on is the following. Equation (88)
must be solved for »¥, in terms of g* and @*. This part of
the problem is exactly as in the two-dimensional theory.
The function @* is then to be determined by an integro-
differential equation which is obtained by expressing @* in
terms of A* in accordance with the definition of @* This
part of the problem is similar to the earlier work on incom-
pressible flow of referefices 1, 2, and 6. Finally the solution
of the integral equation for @* must be used to obtain
expressions for the pressure-distribution at the airfoil, as
affected by the three-dimensionality of the flow about a
wing of finite span.

The results, as expressed by equations (88), (89), (90), and
(83), include the special case of two-dimensional fiow for
which dQ*/dy*=0, and the special case of incompressible
flow for which Af=0. They also include essentially known
results on compressible steady flow for which £=0.

MassacEusETTs INsTITGTE OF TECENOLOGY,
CaxBrIDGE, Mass., May 18, 1948.
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